How a pregnancy test saved the lives of a family in Nazi times

Susanne Krejsa MacManus explains how pregnancy testing saved the life of a refugee woman biochemist and her family in the run-up to World War II.

In the 1930s, the Institute of Animal Genetics at Edinburgh University was the only UK laboratory that ran pregnancy tests. Although the Aschheim-Zondek method invented in Berlin in the late 1920s had been seen as a great step forward, the result took more than 100 hours. It also required testing on female mice. No wonder that the scientific community was excited by a new method that took four hours.

Austrian biochemist Regina Kapeller-Adler had developed a method for detecting the amino acid histidine in the urine of pregnant women in 1933. As the Vienna Daily reported on 30 May 1933 under the heading “Eine neue Schwangerschafts-Reaktion” (a new pregnancy test): “The great advantage of this new chemical pregnancy test lies in the fact that it can be carried out in four hours, whereas the tool that has been most ideal for early diagnostics up until now […] requires a hundred hours until it can be read.”

The second advantage was that it employed a chemical instead of a biological reaction, and no mice had to be killed.

After Hitler occupied Austria (Anschluss) in March 1938, Regina, her medical doctor husband Ernst Adler and their young daughter Liselotte were in severe danger because they were Jewish. The Nazis persecuted Ernst Adler, and he escaped deportation to the Dachau concentration camp only at the very last moment. Regina lost her post at the Institute of Medical Chemistry at the University of Vienna; before that, she had also not been able to get her postdoctoral qualification – as a woman and a Jew.

When Francis Crew, Professor of Genetics at Edinburgh University, learned about the danger Regina and her family were in, he offered her a job in his laboratory, with support of The Society for the Protection of Science and Learning (formed in 1933 in help refugee scientists and other academics).

There was still a problem to be solved: Britain only permitted entry for foreigners if there was a mandatory “guarantor” to vouch for them. Fortunately, Napoleon and Henrietta Ryder deposited the considerable amount of £50 for the Adler family whom they did not know personally, and little is known about this couple. Regina together with husband and daughter could leave Austria, even taking their furniture and his medical equipment with them.

In Britain

In January 1939, they reached London and journeyed on to Edinburgh. Within two months of their arrival in Scotland, she was demonstrating her pregnancy test at the Eleventh British Congress of Obstetrics and Gynaecology. After the German invasion of Norway in 1940, most female foreign citizens were ordered to leave the east coast of Britain. Regina unusually received permission to remain in Edinburgh to continue her research since it was categorised as being of national importance. Ernst was interned on the Isle of Man from May to September 1940. After his release and re-qualification, he started a medical practice in Edinburgh in 1942.

In July 1941, Regina received her Doctor of Science degree from Edinburgh University. From the end of the war, she spent fruitful years in the Pharmacology Department of the university, and in 1952 she got her first university position as lecturer in the Department of Clinical Chemistry. From that time, she meticulously trained and encouraged a series of Ph.D. students, to whom she acted as mentor.

Regina gained recognition, grants and awards. She was internationally acclaimed as a major authority on histamine, which is made in the body and derived from histidine, and gallantly titled “The Histamine Queen” by her exclusively male colleagues in the field, an allusion to her forename. In June 1973, she was presented with the University of Vienna’s Golden Honorary Diploma. She died in Edinburgh on 31 July 1991 at the age of 91.

Kapeller-Adler’s method was an important step towards the modern pregnancy test, but it was not yet the final breakthrough. Not fully reliable on its own, it was used as an additional test or pre-test when standard tests did not give a clear yes-or-no answer.  Today, pregnancy tests detect the hormone human chorionic gonadotropin (hCG), which starts to be produced around 6 days after fertilisation. The results are available in a few minutes.

Acknowledgement and references

Information from this blog came direct from Liselotte Adler-Kastner, daughter of Regina Kappler-Adler and Ernst Adler. In addition, it refers to two articles that she wrote about her parents in “Visa to Freedom 1939 thanks to a Pregnancy Test”, Edinburgh Star 62, March 2009, 9-11, and “From personae non gratae in Vienna 1938 to respected citizens of Edinburgh: a vignette of my parents Dr Ernst Adler and Dr Regina Kapeller-Adler”, Wiener Klinische Wochenschrift (1998) 110/4-5: 174-180 (Viennese Clinical Weekly)

Further reading:

Interview with Liselotte Adler-Kastner at Refugee Voices.

Museum of Contraception and Abortion (MUVS)

Susanne Krejsa MacManus is an independent journalist, author and archivist in Vienna. She does research for the Museum of Contraception and Abortion (MUVS). Thanks go to Liselotte Adler-Kastner, Regina’s daughter.

 

 

Poor law but better care

Graham Kyle explains that a surprising benefit of the harsh Poor Law Amendment Act 1834 was that paupers in the workhouse received free medical care. Perhaps even more unexpectedly, the care had to come from qualified medical practitioners.

Near where I live near Llanfyllin in North Wales, there is a fairly well preserved workhouse that was established under the Poor Law Amendment Act 1834.  A group of volunteers who worked hard to save it from dereliction also assisted the National Archives transposing the correspondence between the local Board of Governors in Llanfyllin and the Poor Law Commissioners in London.

These records are now online and give a wonderful insight into human interactions between ‘the poor’ and those charged with looking after them, as well as the relationships between the central and local governing bodies.

Before 1834, the poor were the responsibility of each parish. The 1834 Act encouraged parishes to amalgamate so that they could afford to build workhouses where people would be sent to undertake menial and boring tasks, such as oakum picking, stone breaking or bone crushing, in return for food and shelter.

This aerial view of  Llanfyllin Workhouse or Y Dolydd, as it became, shows the four separate yards for men, women, boys and girls, each overlooked by the central master’s house, so that any misbehaviour could be quickly checked.

Medical care from medical men

It was policy to make these workhouses uninviting to encourage people to be self-sufficient and avoid them. The food was plain and monotonous, and the accommodation was intentionally made “less amenable than a labourer’s cottage.” Another harsh part of the regime was that families were split up.

A benefit that paupers did gain from the 1834 Act was free medical care, which previously would have been well beyond their means. The local Board(s) of Guardians, being keen to keep costs down, initially appointed men of doubtful skill or training – “lads who had worked in a druggists’ shop for a short while” to provide the health care. However, the Poor Law Commission quickly insisted that only qualified “medical men” could act as medical officers, and in 1842 further stipulated that Poor Law medical officers should have qualifications in both medicine and surgery.

Why they insisted on the dual qualification in medicine and surgery is not clear, although their report stated the reason was that “skill in one branch does not guarantee skill in the other.”  This preceded a similar requirement for admission to the Medical Register by decades. Thus, the pauper had the potential for a higher standard of medical care than the general public, albeit effective therapies were few at the start.

Effectiveness of treatments generally changed especially with the introduction of vaccination for smallpox. When the Government made this mandatory in 1853, they used the Poor Law Medical System as the basis for the roll out of the programme…to use a modern idiom.

An end to the Poor Law

The Poor Law continued until 1930 when the Poor Law Board became the Local Government Board, which took over responsibility for welfare. The Llanfyllin Workhouse had become formally known as the Llanfyllin Public Assistance Institution, although a decade earlier the name had been changed to “Y Dolydd”, Welsh for “The Meadows” in an effort to soften its image. It became essentially an old people’s home, with the former workhouse infirmary providing beds for local general practitioners until the late 20th century.

 

When the Local Government Board took over responsibility for welfare, workhouses were often adapted for use in other care settings.

Other workhouses became part of hospitals, such as Kensington Workhouse (above), which was eventually incorporated into St Mary Abbot’s Hospital.   Lezan, CC BY 2.0 <https://creativecommons.org/licenses/by/2.0>, via Wikimedia Commons

 

Further reading

https://www.workhouses.org.uk/

https://www.llanfyllinworkhouse.org.uk/history/

Hodgkinson, R. G., Poor Law Medical Officers of England: 1834-1871. Journal of the History of Medicine and Allied Sciences, 11 (3) 1956 pp. 299-338

 

Graham Kyle is the President of the History of Medicine Society of Wales and a retired ophthalmic surgeon.

Robert Drane – a leader of pharmaceutical education in Wales, antiquarian and naturalist

Having never visited Wales before, 22 year old Robert Drane moved to Cardiff on 8 February 1856, and the history of pharmacy – and pharmacy education – in Cardiff are very much tied up with him.  Briony Hudson explains.

A contemporary described Drane as “a young man with a charming manner, a striking appearance and a vocabulary and diction that are the possession of but a few of the world’s geniuses.” He had, however, departed abruptly from the respected London firm of Allen & Hanburys after breaking house rules in the respected Quaker-run establishment by staying out after 11 pm and going to the theatre.

Drane first became assistant to the apothecary Griffith Phillips on Duke Street, Cardiff, but two years later, he moved to his own pharmacy at 11 Bute Street, Cardiff. In 1867, aged 34, he opened new, purpose built premises at Crockherbtown (renamed Queen Street in 1886), close to Cardiff Castle.

At that time, those wanting to make or sell medicines usually undertook an apprenticeship with an established chemist, as Drane had done. The Pharmaceutical Society, founded in London in 1841, had established a register of members, but it was voluntary. The Society also opened its School of Pharmacy, the first in the country, at its Bloomsbury Square, London, headquarters in 1842.

There were no pharmacy schools in Wales, although the Pharmaceutical Society and its London school had a Welsh presence from the start in the person of Theophilus Redwood from Boverton, Glamorgan, as the first professor of pharmacy, a post he held until 1885.

The Pharmacy and Poisons Act

Robert Drane as an older man- a photo from the Cardiff Naturalists' Society

In 1868, Parliament passed The Pharmacy and Poisons Act that required those wanting to practise as pharmacists to register with the Pharmaceutical Society in order to be able to dispense particular scheduled drugs, such as opium and strychnine. This Pharmaceutical Society register was then only open to those that had passed its minor or qualifying examination. Pharmacists, like Drane, who had been in business before 1868, were able to join the register without jumping this educational hurdle.

Drane called on the three other pharmacists in Cardiff in an attempt to produce some formal training in chemistry, pharmacy and botany for their assistants. His cooperative scheme intended that there would be nothing to pay, and the assistants would meet two nights a week to learn chemistry and pharmacy. They would also join Drane in Sophia Gardens, Cardiff’s first public park, adjacent to Cardiff Castle, at 7am on two mornings a week to learn botany, a class that he had already instituted soon after settling in Cardiff.

According to Drane’s later account, the scheme fell through because of the “indolence of the assistants” and “the ignorance of the pharmacists.” Despite this, his efforts had laid the foundation for pharmaceutical education in South Wales.

Aspiring pharmacists in South Wales had to wait for local technical education to provide what was missing. Cardiff Borough Council had begun running science and art classes in 1866, but it seems that formal pharmaceutical education in South Wales was unavailable until the establishment of a College of Pharmacy in Cardiff in 1919, five years after Drane’s death in 1914.

In addition to pharmacy, Drane had a strong interest in ceramics and co-wrote a history of the ceramic factories of Swansea and Nantgarw. He is also considered to be the founding father of the Cardiff Naturalists’ Society, which was established in his shop at 16 Queen Street, in 1867, according to many documented sources.

In 1927, the Cardiff Naturalists’ Society unveiled a plaque in his memory on the front of Drane’s shop in Queen Street (below).

The plaque commemorating Robet Drane as a naturalist, antiquary and connoisseur.

Briony Hudson, director of Amersham Museum, is a pharmacy historian, Honorary Lecturer at the Cardiff University School of Pharmacy and Pharmaceutical Sciences, and author of the publication that marked its centenary in 2019. This article is based on her presentation on the history of pharmacy education in Cardiff to the History of Medicine Society of Wales summer meeting on 29 June 2023.

With thanks to the Cardiff Naturalists’ Society for the photographs. See the Society’s web site for more information on Drane’s many interests.

Tracing Britain’s early hospital ships

Ships’ muster and pay book records provide valuable information about hospital ships in the Royal Navy starting in the 17th century, say Edward Wawrzynczak and Jane Wickenden.

Hospital ships carrying surgeons and medical supplies became a regular feature of Royal Naval operations in times of conflict during the second half of the 17th century. The vessels initially employed were typically old merchant ships hired for a specified period which underwent minimal alterations for their special role.

The Royal Navy deployed hospital ships for the first time during the Second Anglo-Dutch War (1665-1667) Four Days Battle, Abraham Storck, National Maritime Museum with aid from the Art Fund

Improvements were introduced early in the 18th century: the gun-deck was reserved for the sick and wounded, bulkheads were removed and canvas screens used to separate infectious cases. From this time, naval hospital ships were built in naval dockyards or purchased outright and modified for the purpose when required.

Many of the ship muster and pay book records have survived in remarkably complete form in naval archives. They provide valuable information about these hospital ships, especially where, when and how they were used, who was responsible for the care of seamen and what kind of patients were brought on board.

During the long 18th century, sea-going hospital ships were employed wherever in the world the fleet was engaged: in the English Channel, the Mediterranean, Caribbean and Baltic, North America and the East Indies. Hospital ships were also stationed at major home ports before the construction of naval hospitals and continued as additional accommodation for the sick.

The nominal surgeon’s complement of a hospital ship included mates, assistants, helpers or nurses, and laundresses/washerwomen or washermen. Their actual number depended on the vessel’s size and function and probably reflected changing naval needs, the availability of suitable staff and the surgeons’ preferences.

The use of laundresses was recorded on the sea-going hospital ship Looe in 1718. In the 1740s, women nurses were often found on hospital ships stationed in port, such as the Blenheim at Portsmouth, with six nurses allocated to every 100 men. Five nurses formed part of the surgeon’s company on the Apollo hospital ship which sailed to the East Indies in 1747.

The records of two hospital ships that served in the Caribbean in 1741-44, Princess Royal and Scarborough, reflect the high incidence of sickness which affected some ships of the line and the high mortality associated with tropical diseases, notably yellow fever, which severely reduced manpower.

Such ships took sick or wounded men from ships of the fleet, cared for them until they were fit to return to their own ships, or conveyed them to a naval hospital. They relieved shore hospitals to facilitate the convalescence of patients, and returned invalided seamen home where they could continue their recovery.

The hospital ship to the fleet also housed the squadron’s physician. At the turn of the 19th century, hospital ships such as Thomas Trotter’s Charon and Medusa carried, as well as the usual medical necessities, essential foodstuffs to minimise the risk of scurvy. They kept the surgeons of the fleet regularly supplied and helped to ensure that their charges remained fighting-fit at sea.

Thomas Trotter (1766-1832), Physician to the Fleet, engraving by Daniel Orme, public domain

Edward is currently BSHM Vice-President and President Elect. Jane Wickenden was the Historic Collections Librarian to the Royal Naval Medical Service at the Institute of Naval Medicine from 2001 to 2021.

Wawrzynczak EJ & Wickenden JVS. From ‘Sick Comforts’ to ‘Doctor’s Garden’: British Naval Hospital Ships, 1620 to 1815. British Journal for Military History. 2023; 9(1): 24-48. https://journals.gold.ac.uk/index.php/bjmh/article/view/1687/1792

‘Wilson’s balls’: TB treatment in the 1940s-1950s

A chance encounter with a jam jar of what appeared to be old ping pong balls in the (currently closed) Bakelite Museum in Somerset, set Christine Gowing on a fascinating journey to discover their link to pulmonary tuberculosis.

In 1945, someone died every ten minutes from pulmonary tuberculosis (TB) in the United States. Nearly 50 years previously, French surgeon Théodore Tuffier had opined that not only collapsing the lung would help but that physically maintaining the collapse with a substance was crucial to resting the lung, so that it had a chance to recover from the tuberculous infection. The procedure became known as plombage.

In the intervening period, a range of procedures and cures was attempted, but a prolonged stay in a sanatorium became the best available therapy. Plombage experiments were performed with a variety of materials, but none really worked. That is, until plastics were introduced which coincided with the particularly enterprising spirit of a young American

Dr David A Wilson                      Kind permission of Dr Robert Wilson

David A Wilson was a member of the surgery house staff at Duke University Hospital, North Carolina in the 1940s. He had, himself, suffered with TB for a year during his medical training. Maybe that experience motivated him to persevere with researching ways to sustain the collapse of a TB-affected lung, following thoracotomy, in an attempt to treat the disease.

Lucite (polymethylmethacrylate) had recently been developed and, following trials with other materials, Wilson experimented with producing spheres made of the acrylic to pack into the patient’s chest cavity. As well as its strength, biocompatibility and resistance to water, Lucite’s ability to be shaped into complex curves made it an ideal material for plombage. Supporting Wilson’s pioneering procedure, the university laboratory technicians at Duke set to work developing one-inch spheres – and trials began.

The procedure was successful and its practice quickly spread, soon hitting the headlines as an effective TB treatment.  A small firm in New Jersey, Nichols Products, which produced plastic novelties, took over production of the Lucite balls in 1946. Archived records show that the balls were despatched widely throughout the United States and overseas, as Lucite plombage became increasingly adopted worldwide as a treatment for TB, until it became eclipsed by the use of modern antibiotics.

This innovative and audacious procedure was not without occasional side effects, however, such as the migration of the Lucite balls. A BMJ report in 2011 described a 76-year old woman who ‘presented with axillary squeaking on moving her left arm which she noticed during a yoga class. Her chest radiograph showed multiple rounded left upper zone lucencies.’  One of the balls had escaped.

It may have been a short-lived therapeutic success, but many patients such as this lived into their old age, free of TB, with what had become known as ‘Wilson’s balls’ in their chests.

Moreover, the significance of this procedure is not only its focus on a mid-twentieth century intervention for tuberculosis, but an illustration of the intersection of healthcare, new plastic technology and industry as a feature of post-World War Two medicine.

A Nichols propelling pencil Author’s own photo

My research journey took me from Somerset to the United States where I met Dr Wilson’s son, visited Duke University and the site of the factory in Moorestown, NJ, where Edgar Nichols, an inventor and multiple patent-holder, mass produced the Lucite balls. The building is now derelict, but in the 1940s and 1950s the factory had produced a range of early plastic novelties, such as the one in the photo above: a propelling pencil with, curiously, a Lucite ball at one end for use as a magnifier and telephone dialling tool.

 Christine Gowing has an MA and a PhD in the history of medicine. A full article with more detail of this pioneering procedure, Lucite plombage, was originally published in the journal of the Plastics Historical Society, ‘Plastiquarian’, December 2022.